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ABSTRACT

In the computation of helicopter rotor flow fields, wake effects can be very
important since each blade passes close to the wake produced by the preceding
ones, causing a large local effect. Also, the vortical flow from the wake of a number
of blade passages causes a large global effect. Extensive work has been done on
helicopter rotor flows using integral methods to follow the vortex wake. These
generally cannot treat compressibility effects. Also, they have difficulty attaining
stable solutions, particularly in hover, where a large number of interacting vortex

sheets must be treated.

A new method has been developed which like integral methods does not con-
strain or ‘sprea.d the wake. Also, like finite difference methods, it can treat com-
pressibility effects. This method has been developed into a computer program for
the computation of rotor flow fields in hover with free wakes. The method utilizes
a finite volume potential flow technique. The basic approach involves modifying
the potential flow wake treatment so that, within the numerical approximation,
the momentum is conserved there as in the rest of the flow field. The internal
structure of the vortex is not solved for, but is modeled and spread over several
grid points. The wake position and vorticity strength are computed so that the
momentum over the wake is balanced in an integral sense. Results computed by
this approach for the circulation and wake geometry are compared with experi-
mentally measured data. Cases treated include subsonic and transonic ﬂowé, high

and low aspect ratios, and two and four-bladed rotor configurations.
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CHAPTER 1

INTRODUCTION

The task of predicting the flow field and airloads of a helicopter rotor con-

tinues to be of primary importance for providing and evaluating improved rotor
designs. Unfortunately, rotary-wing flow fields are among the most complex in
aerodynamics. Recently, application of higher level computational aerodynamics
techniques to this problem has become possible with the advent of high speed large
memory computers. Computational studies have been conducted to investigate the
influence of the rotor wake and develop methodolbgy for predicting the rotor flow
field and blade airloads {1]. Most current methods for computing rotor flow fields,
including wakes, are based on integral or finite difference techniques (2|. Integral
methods, in the form of liftiné line or lifting surface methods, are able to treat the
rotor blades 'as well as the wake in a single unified way 3i. They, however, i’lave
several disadvantages: they are restricted to linear, low speed incompressible cases
and they have difficulty attaining stable solutions in hover where a large number
of interacting vortex sheets must be treated. Finite difference methods (also finite
volume and finite element), on the other hand, usually can treat compressibilty
effects and can accurately solve for flow in the immediate region of the blade.
Most of these methods, which include Potential Flow and Euler based methods,
however, do not treat the flow field in a single unified way: they isolate the region
close to the blade and only solve the difference equations in those regions. The
entire vortex system is currently treated in these methods by coupling with an
integral technique, such as a classical lifting line or lifting surface method. This
vortex calculation is used to determine an induced velocity on the surface of the

finite difference grid surrounding each blade, which is then used as a boundary




condition for the finite difference calculation in a coupled iteration scheme.

1.1 Background

For hovering rotor wake geometry, the fundamental wake structure was con-
firmed in the 1960’s and early 1970’s during model rotor tests of rotors with
varying numbers of blades, twist, taper, camber, tip shape, thrust level, and tip
speed [4]. Smoke flow visualization was used to photograph cross sections of the
wake as shown in the sample flow visualization photograph in Figure 1. The fun-
damental wake contains two primary components. The first, and most prominent,
is the strong tip vortex which arises from the rapid rolling up of the portion of
the vortex sheet shed from the tip region of the blade. The second feature is
the vortex sheet shed from the inboard p.ortion of the blade (Figure 2). Flow
visualization photographic data were analyzed to determine wake coordinates for
varioﬁs rotor designs and operating conditions. Generalized wake equations were
developed for the tip vortex and inboard wake geometry, as generalized functions
of number of blades, twist, and thrust level [4, 5. The characteristics of the wake
geometry largely result from the velocities induced by the strong tip vortex. The
exact nature of this, however, has been difficult to distinguish in flow visualization

studies.

1.2 Rotor Analysis in Hover

An understanding of rotor wake behavior is of primary importance in the
prediction of aerodymamic loading. It is clear that any complete analysis of the

rotor problem must account for four distinct yet coupled phenomena:
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Figure 1: Sample Flow Visualization Photograph (From Reference i4!)
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Figure 2: Schematic of Rotor Wake Structure (From Reference {4] )
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1) the nonlinear compressible flow near the blade;
2) the highly complex vortex structure;
3) close blade-vortex interactions;

4) viscous flow phenomena such as stall.

Analyses for each of these aspects of the problem already exist, though not in a
rigorously coupled form. A major question in advanced aerodynamic methods is
how can the wake be included in rotor flow field analysis. A number of approaches
for modeling the wake have been developed. In the wake modeling approach, the
analysis can be resolved into three components: the aerodynamic theory used for
the inflow solution, the method of calculating rotor performance from the inflow

solution, and the wake model.

By far the most common flow analysis methods curreqtiy used in the rotor
industry are various integral formulatioﬁs of the potential equation. These incl.udé
panel methods, lifting line and lifting surface approaches. This class of schemes
provides the easiest and most efficient methods to predict the inflow induced by the
rotor’s complex wake system when the geometry of the system can be speciﬁe;i a
priori. The analysis based on a lifting line representation for the blade is reported
to predict hover performance for a wide range of rotors {6]. But this representation
is not suitable for complex planforms. Lifting surface methods have been applied
to hovering rotor analysis by a number of in;restiga.tors (7, 8]. Typically, modeling
of the influence of the complete rotor and wake has been accomplished with these
methods. In this approach the blade geometry is represented by a thin surface
composed of a number of conveniently chosen trapezoidal panels, forming a vortex
circuit in the form of a rectangle. The geometry of the wake is either computed

or prescribed. The wake is also represented by a multiple vortex circuit system.
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Most of the effects of compressibility cannot be obtained by this method.

Panel methods use a surface singularity distribution to solve the linear poten-
tial equation for arbitrary geometry (9] . The use of a velocity potential reduces
the problem to the solution of an integral equation for a scalar function. A free
wake analysis, which is the most sophisticated approach to wake modeling, con-
siders the wake as a free vortex flow. A number of the panel method solutions for
the hovering rotor include a free wake geometry calculation {10,11,12]. In these,
the wake is divided into near, intermediate, and far wake regions. Vortex filaments
are distributed in the near and intermediate wake regions and an analytical model

used to represent the far-wake.

Miller [lf] developed a hover free wake-gepmetry calculation, using two-
dimensional and axisymmetric models for efficiency. The wake was assumed to
have rolled up into three vortices (tip, inboard, and root) which were replaced
by a far wake model after four revolutions. Murman and Stremel 12| calculated
two-dimensional unsteady wake development by a cloud-in-cell method. Discrete
vortex elements in the wake were tracked in a Lagrangian frame. For each time
step, the vorticity was distributed to a fixed mesh, on which the velocities were
calculated by a finite difference solution of Laplace’s equation. Stremel [13! applied
this two-dimensional model to hovering rotor wake roll-up. Roberts {14] developed

a cloud-in-cell method to caiculate hovering rotor wake geometry.

In recent years a number of finite-difference codes for the prediction of tran-
sonic rotor flows has been developed. Egolf and Sparks {15| coupled a full potential
solution for the near field of a hovering rotor blade with an incompressible discrete

vortex solution for the far field. The wake geometry was prescribed, and the far
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field solution determined the velocity potential on the boundaries of a finite differ-
ence computational domain. Sankar et al [16] solved three dimensional unsteady
Euler equations for a hovering rotor in a small box around each blade. Caradonna
and Strawn [17] solved the full potential equation in conservative form also in a
box around each blade and incorporated a wake modeling scheme. The basic ap-
proach to this wake modeling was to separate the rotor wake system into two parts.
The most important part, the tip vortices, were explicitly modeled in the finite
difference solution procedure when they were inside the computational box. The
second part of the wake system, consisting of vorticity elements that were outside
the computational grid, was modeled with an inflow boundary condition at the
boundary of the computational grid. A similar method was developed by Tung

and Chang [18] with a non-conservative formulation of the potential equation.

The approach used in these finite-difference methods to include the total wake
influence has been to include the effects of near vortices in the f;)rm of an inflow
boundary condition applied on the surface [17] with the inflow being determined by
a Biot-Savart computation. The outer vorticity contributions are included either
on the grid outer boundary or specified as a spanwise varying correction to the

blade twist distribution.

The investigation presented herein describes a unified method that is fully
compressible and which computes the wake without requiring external specification
of the wake, or separate computations for the wake and blade region. The problems
associated with other methods are avoided by using an embedding procedure by
which vorticity layers can be put anywhere in the grid. The method is based
on the fact that any flow field can be decomposed into potential and vortical

parts. A potential is defined on a set of grid points, as in standard potential
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methods. Also, as in these methods, mass balance relations are enforced at each
point on the grid. The potential, however, does not have any discontinuities,
and therefore does not represent any vorticity. The vorticity is represented by a
separate velocity field which is added to the gradient of the potential. The location
and strength of this velocity field is determined by momentum considerations.
This added field is concentrated in sheets, as is the vorticity that results from
it. No external specification of the strength of these sheets or their location is
required: momentum conservation relations together with mass balance relations
are used to determine these. This is believed to be the first complete treatment of
this problem. The method utilizes a modification of a compressible finite volume
potential flow technique frequently used in fixed-wing analysis, which has been
developed into a computer program for the computation of compressible rotor
flow fields in hover with free wakes. Free wake geométry determined with this new

wake treatment are in substantial agreement with experiment';
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CHAPTER 2

GENERAL ANALYSIS

2.1 Elementary Considerations of Hovering Rotor

In the momentum theory analysis the rotor is modeled as an actuator disk,
which is a circular surface of zero thickness that can support a pressure difference.
The flow problem is solved by using the basic conservation laws of fluid motion.
The actuator disk model is only an approximation to the actual rotor. Momentum

theory gives the induced power per unit thrust for a hovering rotor:

[T

Yinduced = P/T = V EP_A“

This relation determines the basic characteristic of helicopter rotor. Simple mo-
mentum theory provides some understanding of the basic relationships between
such important design parameters as disc loading and power required per unit of
thrust. However, this theory has serious limitations in providing guidance for rotor
design and does not provide a physical concept that could explain the nonunifor-

mities of downwash velocities.

Vortex theory uses the Biot-Savart law for the velocity induced by the wake
vorticity. In this approach the rotor is modeled by segments of a vortex filament.
The vortex elements are allowed to be transported by the resultant velocity of
the free stream and vortex induced velocities calculated using the Biot-Savart law.
The computational procedure required in the free wake analysis is huge and can
be accomplished only by the use of high capacity computers. In addition, various
safeguards must be used to avoid mathematical singularities that have no physical

counterpart.
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In recent years a substantial number of finite-difference codes for the predic-
tion of three-dimensional transonic flows have been developed. These codes have
been successfully used in fixed-wing flow analysis. The development and use of
corresponding rotary-wing codes has proceeded very slowly. A primary reason for

this delay is the much greater complexity of the rotor environment.

Classical lifting-line theory treats the case of a high aspect-ratio, planar. fixed
wing in steady flow. In the linearized model both the wing and wake are repre-
sented by this planar sheet of vorticity. For the fixed wing the distortion of the
wake and the rollup of tip vortices can generally be neglected, because the wake is
convected downstream away from the wing. The basic assumption of lifting-line
theory, that the wing has high aspect ratio, can sometimes be satisfied with a

rotor blade. However, the requirement that there be no rapid change in spanwise

circulation restricts the validity of lifting-line theory rotor flow even though the

geometric aspect ratio is large. There are two important regions of general rotor
flow fields where this requirement is not satisfied: at the blade t'ip and near a
blade-vortex interaction. On rotor blades the ioading is typically concentrated
near the tip because of the rotation of the blade, and the gradient of the lift is
particularly high there. Hence, any small distortion of the loading due to the three
dimensional flow effect is very important. Conservation of vorticity requires that
the bound circulation be trailed into the wake from the blade tip and root. The
vorticity is also left in the rotor wake as a consequence of radial and azimuthal
change in the bound circulation (Figure 3). In classical theory, the trailing vor-
ticity, v¢, which is due to the radial variation in bound circulation, is parallel to
the free stream. The shed vorticity, v,, due to the azimuthal variation in bound

circulation, is oriented radially in the wake. The strength of the rotor trailing and
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Figure 3: Schematic of Trailed and Shed Vorticity in Rotor Wake (From
Reference {19] )
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shed vorticity are given by,

Hover is the operating state in which the lifting rotor has no forward velocity
relative to the air. This implies axial symmetry of the rotor, and hence, that
loads on the rotor blades are independent of the azimuth position. Hence, this
particular shed vorticity is not of importance in hqver airload computations. While
the circulation drops to zero over a finite distance, the rate of decrease is still very
high. The result is a large trailing vorticity strength at the outer edge of the wake,

causing the vortex sheet to roll up into a concentrated tip vortex. The tip vortex

has a small core radius that depends on the blade geometry and loading. On the

inboax;d portioﬁ of the blade, the bound circulation drops off gradually to zero at
the root. Hence there is an inboard sheet of trailed vorticity in the wake with
opposite sign to the tip vortex. Since the gradient of the bound circulation is low,
the root vortex is generally much weaker and more diffused than the tip vortex.
Hence, the strong concentrated tip vortices are by far the dominant feature of
the rotor wake. In addition, because of its rotation, a rotor blade encounters the
tip vortex from the preceding blade. When a vortex passes close to the blade it
induces a large velocity and hénce a large change in léading on the rotor. Methods
have been developed to calculate the nonuniform inflow due to the wake, the self
induced distortion of the wake, and the vortex induced loads {19]. From the
dominant role of the tip vortices in determining the inflow and loading, it follows
that the determination of its position is the most important part of the rotor wake

geometry calculation.

——— ————— - - - -
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2.2 Hovering Rotor Wake Models

There are a number of methods used to specify wake geometry in rotary
wing analysis. The rigid wake model implies an undisturbed helical geometry, in
which all the wake elements are convected with the same mean axial velocity. In
this model, the wake consists of helical vortex sheets that move as rigid surfaces
with uniform velocity and no distortion. The transport velocity of the wake is
determined by rotor disk loading, and the pitch of the helical surface is determined
by the axial and rotational velocity of the blades. The wake movement imparts
a velocity to the fluid at the wake surface. In the limit of an infinite number of
blades, the sheets are very close and as a consequence all the fluid is carried with
the wake and there are no losses due to flow around the edges. With a finite
number of blades there will be radial ﬂow as well, which decreases the lift at the
blade tip. An elementary extension of this model is the semi-rigid wake model, in
which each element is convected downward with the induced velocity at the point
on the rotor where it was created. The simplest wake model including the effects of
a finite number of blades consists of helical vortex sheets trailed from each blade.
The major effect of the finite number of blades is a reduction of the loading at the
blade tip. This effect is generally represented by a tip loss correction for a finite

number of blades.

A wake model consisting of undistorted vortex sheets is not adequate for he-
licopter rotors, where the interference between the rotor blade and wake vorticity.
and the self induced distortion in the wake, are important. The trailed vortic-
ity quickly rolls up into concentrated tip vortices that remain close to the rotor

and strongly influence the loading near the tips of both generating and following

blades. The most accurate specification of the wake is the free wake model. This
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includes the distortion from the basic helix, as each wake element is convected
with the local flow, including the velocity induced by the wake itself. When mea-
sured wake geometry information is used, instead of a calculation this is called a
prescribed wake model. Clark and Leiper |20] developed a method for calculating
the distorted wake geometry of hovering rotors. Their wake model consisted of a
number of constant strength trailed-vortex lines. The far wake was approximated
by segments of ring vortices. Two revolutions of the free wake were used, followed
by 30 revolutions of far wake. Landgrebe [4] conducted an experimental investiga-
tion of the performance and wake geometry of a model hovering rotor. The wake
geometry was measured by flow visualization, and the data was used to develop
expressions for the axial convection and radial contraction of the tip vortices. The
tip vortex elements were found to have a roughly constant descent rate before and
after passing beneath the following blade. Prior to the encounter with the blade
the descent rate is approximately proportional to the blade loading, C,/o. After
the encounter the axial convection rate is higher and is approximately propor-
tional to the mean inflow, /C, /2. This generalized wake geometry information
wa..s used in rotor performance calculations. Scully [21] developed a free wake anal-
ysis method for a helicopter rotor. The procedure for calculating wake geometry
consisted basically of integrating the induced velocity at each wake element. Once
the wake geometry is specified. either a lifting surface or a lifting-line theory can

be used to obtain blade loading.

2.3 Potential Flow Methods

Lifting surface theory retains the mutual interaction of all elements of the
rotor and wake by representing the rotary-wing by vortex surfaces and by satisfying

appropriate boundary conditions over the entire surface. A free wake geometry

- - B Y
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calculation is required, and also a calculation of the tip vortex roll-up and other fine
structures of the wake. Hence, the computation time required increases rapidly

with the number of elements used to represent the blade/vortex system.

From the above discussion of these vortex theories, it can be seen that, though
they offer a precise description of the rotor aerodynamics in practical application,
they require a large amount of computational effort. The application of a velocity
potential which will be described below, makes it possible to determine steady and
unsteady flow fields induced by the rotor in both incompressible and compressible
fluids with a precision similar to that offered by the above vortex theories but with

less computational effort.

2.3.1 Velocity Potential in Incompressible Flow

The continuity equation for an incompressible fluid requires that

du OJv Jw

— 4+ —+ = =

dr Jdy Oz
further restricting this perfect fluid to be irrotational leads to the existence of a
velocity potential, ¢. The components of the velocity vector associated with ¢ can

be obtained as

7(P) = -V¢(P)

The condition of continuity can then be written as

L - 3% 0% 9%
V-V¢=6I2+ay2+322:0

resulting in Laplace’s equation for ¢.

Solution to this can be expressed as

sonnr= | [ () - 22]
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This equation relates the potential at an arbitrary point in the fluid to the
superposition of potentials due to doublet and source singularities distributed on
the body surface. Kocurek [21] applied this singularity type of discretization to

solve the problem of a hovering rotor.

2.3.2 Potential Methods in Compressible Fluids

At present a number of schemes are being developed to compute compressible
flows. A variety of approaches use potential methods. The transonic flow past a
non-lifting, hovering rectangular rotor was first solved by Caradonna and Isom
[22]. They developed a finite difference calculation procedure for the Transonic
Small Disturbance equation. Later, it was extended to solve the Full Potential
equation. For lifting rotors, the conventional potential flow method was not able
to treat the rotor blade as well as the wake in a single unified way. In this method.
the vortex sheets are treated as discontinuities in the potential, which constrains
the sheets to lie on segments of surfaces of the computational grid. Accordingly, in
conventional potential methods, only short segments of the sheet, which are fairly
flat, and where the grid can be distorted to follow the sheet, can be accurately

treated.

More recently, a coupled iteration scheme has been developed where a finite
difference solution procedure is obtained in a small region near each blade. The
computation in this grid is coupled to an exterior vortex filament wake model,
which describes almost all of the wake influenice. Unfortunately there are major
drawbacks to this approach. First, unlike the computation, there is no clear sep-
aration in the physical flow between the wake and the flow in the blade region. If

accurate solutions are to be obtained, the flow region that is computed using the

o et - —. s 4 s e C
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compressible method on the grid must extend a large number of chords from the
blade. The wake then typically penetrates this region and must be treated within
the grid. Since the size of this region as well as the wake geometry near the blade
will depend sensitively on the flow conditions, deciding which portion of the wake
spirals must be included in the grid can be complicated for the general cases. Fur-
ther, simply embedding the vortex sheet as a potential discontinuity or embedded
line vortices is only feasible for simple cases, such as where the sheet rolls up into
a single well-defined vortex near the tip and one near the root. Further drawbacks
concern the feasibility of treating the general wake, even outside of the grid re-
gion, as a collection of vortex filaments. While this is possible in simple cases, in
general it is very difficult since the vortical regions can leave the blade with even
the signs of vorticity varying along the blade. Also if there are a large number of
filaments, these must be-integrated over each time step to determine the velocity
indu.ced by the wake over the outer ‘boundaries of the grid regions. Accurately
interfacing this calculation with a set of grids near each blade would appear to
be complicated. Furthermore, a filament approach complicates the computation
of near blade-vortex interactions because special smoothing must be applied near

each filament to eliminate locally infinite velocities.

2.3.3 Vortex Embedding Method

The basic approach described herein involves modifying the potential flow
wake treatment so that, within the numerical approrimation, momentum is con-
served there, as in the rest of the field. The internal structure of the vortex sheet
is not solved for, but is modeled and spread over several grid points. The wake
position and vorticity strength are computed so that momentum over the wake is

balanced in an integral sense. The potential is defined on a set of grid points as in
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standard methods. Also, as in these methods, mass balance relations are enforced
at each point on the grid. However, the potential does not have any discontinu-
ities, and therefore does not represent any vorticity. The vorticity is represented
by a separate velocity field which is added to the gradient of the potential. This
added field is concentrated in sheets, as is the vorticity that results from it. No
external specification of the strength of these sheets or their locations is required:
momentum conservation relations are used to determine these, together with the

mass balance relation. Thus, it is a true free-wake method.

Initial use of the method for a vortex line convecting past a wing in compress-
ible flow was published in 1983 [22]. A preliminary use of the method for roll-up

of vortex sheets was also published in 1983 [23].

2.3.4 Description of the Vortex Embedding Procedure

The basis of the Vortex Embedding procedure lies in the fact that any velocity
g can be expressed as the sum of potential and vortical components. First the

velocity is decomposed into a free stream, potential, and vortical part:

u
q": v :fo+6¢+(iu (1)

where & is the rotor angular velocity, directed along the axis, 7 is normal to the
axis and

d=Vxqg"

The vortical part, ¢ ¥, is concentrated near the sheet. This decomposition is made
especially powerful by the fact that for a given & distribution ¢ ¥ is not unique.
This can produce some very useful simplifications in various flow models. For

instance, in a typical potential computation for the lifting flow about a wing, the
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entire velocity is usually represented by the potential, ¢ (that is ¢ ¥ = 0). However, .

o BN ]

] the production of lift implies the shedding of vorticity. With a potential alone this

; can only be represented by a sheet along which ¢ is discontinuous and where the
A 4
{ magnitude of this discontinuity is ', the shed circulation. This sheet typically must
’ lie along a grid coordinate. However, the use of velocity decomposition allows a

j considerable simplification and versatility in the sheet description. The basic idea
is to spread the sheet into a thin vorticity region described by an appropriate

velocity distribution, ¢’ v.

A fixed grid (in the rotating blade-fixed frame) is used to solve the compress-

ible-potential equation for the potential, ¢:

)
: l 9z(pu) + dy(pv) + 92 (pw) =0 (2)
{ where p is the density and has the isentropic form away from the sheet based on
\ the total velocity, ¢, with components u, v and w.
Y=L 2 n o mz any| y E
p=[1- () ML(@ x AP - 77) 3)
v
X The vortical component, ¢ Y, is spread over several grid points around the vortex
’ ) sheet so that the vorticity is concentrated there. ¢ ¥ satisfies

! ’ Vxq*=a

During the iteration towards convergence (the solution is steady in the blade

coordinate system for hover) a four step procedure is used repeatedly:

| 1. The vortex position is integrated as a set of marker streamlines to follow

the flow using interpolated value of ¢ from fixed grid;
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2. 4V is computed at grid points near the sheet;

3. A potential, ¢ is computed at each grid point to satisfy Equation (2)

with § ¥ fixed.
4. A new velocity ¢ is computed at each grid point based on Equation (1).

At convergence Equation (2) is satisfied and the vortex sheet follows the flow.
Although the vortex sheet is effectively spread over several grid points, ¢V is
a continuous vortical velocity field which suffers no artificial numerical diffusion.
The internal structure of the sheet can be modeled by simply choosing appropriate
values or solved for using a viscous flow solution. Also, experimental or theoretical
information can, if desired, be inserted into the method to prescribe this internal

structure, while no experimental information is needed for the wake position.
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CHAPTER 3

SOLUTION PROCEDURE

3.1 Basic Formulation

A potential flow solver using a rapidly converging approximate factorization
scheme, together with a finite volume discretization scheme is employed. The

scheme, originally developed for a fixed wing, is described in Reference {24, 25].

i First, a mapping is defined from physical (x, y, z) to computational (X, Y, Z)
4‘ coordinates. A set of constant radial computational planes are defined. In each
plane the airfoil is mapped to a segment on the real axis using the transformation
described in Reference (26]. If the transformations are represented by a Jacobian

matrix H, Equation (3) may be written in terms of transformed variables:

%(phv) + %(th) + a%(phw) =0 (4)

§ v

where U, V, W are contravariant velocities, and A is the transformation Jacobian,

h = det (H)

; i

The physical velocity components, in terms of the potential and vortical velocities,

<

§ are:
) u -1 O« -
g=|v | =(HT) |& |~QxFfrg® (5)
w P,

where only derivatives of the potential with respect to the computational coordi-
1 ‘ " nates are required. The contravariant velocities are then calculated in terms of

physical velocities.

U u
|4 =H ' v
w w

-~ oy

e ————— O R~
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H is given by

., , z,
H=1{y. vy, vy,

x % %

Equation (4) can now be represented as a flux balance relation. For this purpose, a
secondary set of cells is introduced interlocking with the primary cells (Figure 4).
In the computational domain the faces of the secondary cells span the midpoints
of the primary cells. The purpose of the secondary cells is to serve as control
volumes for the flux balance. The formula for the local flux balance can now be
written using a second application of the scheme on the secondary cells. where

Equation (4) is approximated by
Hy 565 (PRU) + Hyxby (PRV) + tiy, 6, (phW) =0 (6)

where the -quantities phU, phV, and phW are the fluxes across the faces of the
“secondary cell. This formula is equivalent to calculating the flux across the paft
of a face of a secondary cell lying in a particular primary cell using the values for

p,h, UV, W calculated at the center of that primary cell.

3.2 Grid Generation

The grid is a particular type of “H” mesh. A two-dimensional grid is generated
for each radial plane. The computational plane is first covered by an equally-spaced
grid in the region

IX|<1-6
Y|<1-6

where 6 > 0 is a small parameter that controls the far-field boundary position. A

TR TR )
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stretching is performed that maps X and Y from =1 to * cc.
X'=¢/2+ X7 /(1 - (X7)*/(1-¢/2)%),
[+¢/2< X <1- 6]
X' =X, [-¢/2<X <¢/2
Y'=1/2Y(1 - Y?)
where,

Xt =X=c¢/2

and the airfoil is mapped to a segment on the real axis:
Y=0 [-¢2<X<ec2.
A square root transformation

L

- e Lo,
z = ZI, - (xl _‘yl)l/z = RI:et. 2

is used to map the Z plane to the upper half plane (Z).

24

The same transformation is then used to map the airfoil to a curve about

the real axis in the z plane. Next, a shearing transformation, f(z), is defined

in the Im(z) direction such that this is mapped to a segment of the real axis.

The physical plane coordinates are then computed by subtracting f(z) from the

z plane coordinates of the computational points. To improve the resolution near

the leading edge, a nonorthogonal transformation is used in the Z plane in place

of the basic square root one:

R a~+yc (12

iy =
a-vR ve

<
<~

where a is a grid compression length scale.

g e —
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This grid is then rotated to the desired pitch angle as described by the twist
distribution of the rotor blade. Finally, a simple blending technique (27] is used

to enforce the outer and periodic boundary conditions on the grid (Figure 5).
3.3 Discretization

The finite volume scheme of Reference [28] is used to discretize Equation (6).
Two staggered grids are used. On one, p,u,v,w,U,V,W, H and h are defined; on
the other, z,y,2,X,Y,Z,¢,and Lo(¢) are defined. The nodes of each grid are
at the centers of the cell of the other, and a box scheme is used to compute the

derivatives in Equation (5) and Equation (6). For a variable f, we define
6Xf]‘<+*’j+§'k+§ = ift+l,]+l,k+l - ft+1.],k+l + fi+l.j+l.k

~fivigk = frjer ke = figheer — fijer ke — fijki/4

Similar expressions can be written for the Y and Z derivatives.

The basic finite volume scheme leads to an odd-even decoupling of solutions.
If a small (higher order) term is added to the right hand side of the Equation (6),
this problem can be eliminated. This can be easily seen by considering the case of
incompressible flow in two dimensions. Setting & = 1,p = 1, Equation (6) reduces

to

ByyOxx® + “xxévvqs =0

where odd and even points are decoupled. It is due to the evaluation of flux across

the face labeled AB in Figure 6 using a value of ¢, calculated at the point A.
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Figure 6: Schematic of Shift Evaluation for Compensation Flux Calculation
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If a compensation flux, eAY ¢, ., is added across AB, the point at which ¢_ is
effectively evaluated is shifted from A to B. The addition of similar compensation

terms on all faces produces the scheme

By y 6x.\'¢ + hxx 6YY¢ - 65.\’.\{}')' ¢=0

The compensation terms for Equation (6) can be found in a similar manner {28].
These are

A= ph(gx.x - U2/a2)

C= ph’(g?ha - W2'/a2)
Where g, ; are the diagonal elements of (HT H)™!.

Deﬁning the following quantities
Qev =(A+ B)p, 6,0
Qyz =(B+Cluyb, 0
Qux = (C+ A)uy 6,9
Qxvz = (A+ B +C)byy ;¢

Equation (6) can be written with recoupling terms as:

By z6x (PRU) + piy 5 6, (PRV) + uy, 6, (phW)+

1

e[“’26XYQ.\’Y - /‘x&Yszz + ”'Y‘Sszzx - 5 6)<ersz1 =0 (8)

where

Suvsf = fiv1 1 0+1 = fijrker — fivr ke, ~ fijk+1

—fivrgrre + fijere + fivrgh = figk,
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0<e<1/2

For stability in supersonic zones either a first order or a second order artificial

viscosity can be used. For the first order form a switching function is defined:

M&

s = maz (0,1 — M2)

where M is the switching Mach number, taken to be slightly less than 1.

Then, from Reference {25/,

uv wuU

P = #(U26‘2<¢ + —4—5XY¢+ T&zx¢)
vw uv

Q = M(V263¢ + —4—_6\"2¢ + —4—6‘(Y¢)
wu Vw

R = M(W2522¢ + Tézx‘b + Tévz d’)

. u = cshp?/a?

In this, P, Q, anq R are constructed so that
P approximates — u Ui, p
@ approximates — u{V{é, p
R approximates — uiWié’zp
In the numerical scheme Equation (8) is modified by the addition of the terms
6.P+6,Q+6,R

Finally, an iterative scheme has to be devised for solving the discretized equation.
This is accomplished by embedding the steady state equation in an artificial time
dependent equation {29]. Such a process has to be carefully controlled to ensure

’ stability and convergence. It is helpful to regard the iterations as successive levels
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in an artificial time coordinate. The essential idea is that the iterative procedure,
regarded as a finite difference scheme for a time dependent process, should be
consistent with a properly posed initial value problem which is ‘compatible’ with
the steady state equation; that is to say, that the solution of the initial value
problem should reach an equilibrium point which represents a solution of the
steady state equation. Then, if the difference scheme is also stable, it should

converge to the desired solution.

Considering first the two dimensional case, the full potential equation can be
written in canonical form:
(1 —‘M2)¢33 +¢nn =0 (9)
where s and n are coordinates in the local stream and normal directions and
_ 1. ’ 2
ésg —_ q—2(u .¢I'.'C + 2uv¢zy + v ¢yy)4 -
_ 1.y 2
wnn - q"E(v ¢zz - 2uv¢zy -+ U éyy)

' In the finite difference form for Equation (9), let updated values of potential

¢ at any level of the calculation be denoted by the superscript +~. Then the typical

central difference formula for a second derivative in the streamwise direction can

be written as
A * (1+ rAJ:)cbl-*'j ~ (1 -rAZ)di; + dis1,;

'—l,]‘ —
b2z = —
zz AIz

Where the updated value is used on one side, the old values on the other side

(because the updated value is not yet available), and a linear combination of the
two is used at the center point. In the time dependent system this formula may

i be interpreted as representing:

At
l ¢zz - 'A_z(¢:t + r¢t) .

Tl : RRRREEE R i T
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With a similar representation, Equation (9) can be recast as a time dependent

equation which contains mixed space-time derivatives;

(1 - M2)¢36 —2a¢, + Onn — 200, =0

The values of @ and 3 depend on the combination of new and old values actually
used in the difference formulas. While interpreting the difference scheme as the
representation of a time dependent process, it can be seen from stability analysis
that the presence of a ¢; term can lead to instability at supersonic points {30|.
This is in contrast to the subsonic part of the flow. There, the damping due to ¢,

plays a critical rule in the convergence of the relaxation scheme.

The relaxation schemes have to be devised based on these principles, extended

to three dimensions. For our equations, we solve a discrete approximation to
8. (phU + P) + 6, (phV + Q) + 6, (phW + R) = ad ., — Bb, . + 10, + 66, (9)

In this care should be taken to have § zero at all hyperbolic points. To solve this
system of equations we have used an Approximate Factorization scheme that is

described in the following section.

3.4 AFZ Scheme

During each iteration of the cycle a rapid approximate factorization method
is used to solve Equation (8) with ¢V fixed. The factorization is used in two-
dimensional cylindrical (constan@ r) surfaces about the rotor axis. The angular
extent of the grid on these surfaces depends on the number of blades present. The
grid is periodic at the two vertical edges and the potential and § ¥ are also forced

to be periodic there.
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The basic idea behind the AFZ scheme is to solve a set of implicit equations
in each constant radius plane, for a correction to ¢. Since no implicit equations
are solved in radial direction, the three dimensional array of ¢ values can be stored
on disk and only several 8 — y planes of data need be stored in the computer at

any one time.

In Figure 7, the marching direction in the computational plane is shown.
The equations are solved separately in each half plane (upper and lower) with
boundary conditions that ensure continuity across the interface at convergence.
During the iteration sweep number n + 1, when updating plane number k, values
of ¢ are available corresponding to iteration n + 1 in plane k — 1 since it has just
been updated. Only the updated (level n) values are available in planes & and
k + 1. It was decided to make use of the available updated values in calculating
- residual at plane k. It is most efficient to compute contravariant velocities only
once each iteration between each plane and use them in compl;ting Lo(®) for both
planes on either side. To directly incorporate updated values of ¢ into each Ly(¢)
computation, it would be necessary to abandon this approach and recompute these
velocities, using them only once for each computation. This would almost double
the number of calculations. An alternative, which was chosen instead, involved
adding the correction multiplied by an appropriate constant to Lo(#), computed

using only old values at each plane. The final factorized scheme can be written as
Ny 69" = awL(¢™) + awCE] 64

¢n+l = ¢n + 643"'. (10)

where N, is an operator in the XY plane, o is an operator in the supersonic

zone and a number in the subsonic zone, w is a relaxation factor and £ , is the

. — B e e
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shifting operator:
E; 6¢k = 60k-1
N,, was chosen from a successful two dimensional ADI scheme [30];
Nyy = (ax —6,A8)(a, —6,BS,) (11)

The values of A and B are given by Equation (7). Also, a, and a, are numbers

at subsonic speed, and become operators for supersonic flow.

To approximate first order artificial viscosity terms
a, =a-6 uU26:

a, =a

For flow in the + X direction (in this mapping there is no flow in — X direction

in the computational plane):
a=ag+ 015;

where
ap = maz (ﬂ09ﬂl)

2
Bo = Py AZ r(Z) maz (0,1 — %5)
By=2P r(z) C

4
a, = Py Py AZ +(Z) min(1, 37)

4
az = Py P, AZ r(Z) min(, 375

C=P2ao

r(Z) = 1+ re/rep

4
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P; - P; are ADI parameters. The relaxation factor w is given by
w = P3(1 + 1/r(2))

The form of ap was chosen to become small when the local Mach number ap-
proached 1, which is required for stability. The use of 1/r(Z) in the formula for w
results in a relative under-relaxation for larger values of r, which further increases

stability and improves convergence.

The solution sequence consists of a set of cycles. In each cycle there are
k sweeps through the field, in which values of P; are cycled and set equal to
PP,ePP,e?PD---eX~1P), where ¢ is a constant. All other parameters are kept
constant. Best results were found for K = 4 and e = % for fine grid calculations.
In each sweep the factorized equations are solved plane-by-plane starting from the

root, for corrections é¢, which are added to ¢. In each plane, first
(a, — 6, Ab)¢ = awéEz'&b" + awL(o)™
is solved row-by-row for a temporary two-dimensional variable é. Then,
(o — 6, B6, )66 = ¢
is solved column-by-column for the corrections 6¢.

3.5 Vortical Velocity Calculation

The calculation of ¢V involves two parts: first the vortex sheet position is
integrated as a set of marker streamlines to follow the flow using interpolated
values of ¢ from the fixed grid; then, from these marker positions ¢ ¥ is computed.

As discussed in section 2.3.3 in the decomposition of the potential and vortical
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components, the vortical component, ¢, is not unique. The basic idea is to
spread the sheet into a thin vorticity region described by an appropriate velocity

distribution, ¢ °.

After solving for ¢ as described in Section 3.4, a velocity
§=Vo+q"°
is computed at the grid points. The velocity is then interpolated to the marker
locations. This is done by using a bilinear interpolation of the velocities at the
four nearest grid points to each marker location (Figure 8). The markers are
defined at each 6-like grid plane (approximately constant 8). Values of r and y
are computed for each marker using a forward Euler integration scheme marching
from one #-plane to the next.
Fu(s + As) = 7(s) — AS x lFy) )
[n Equation (12) r,(s) is the current marker position. ¢{,) is the interpolated
velocity at the marker location. To generate the sequence of values for r, (s}, it
is necessary to determine which computational cell each vector is in and compute
an interpolated value of ¢{7,) using values of ¢ at corners of that cell. A simple
test on r is used to determine the r-plane, or K index of the cell. The other
indices required tests on th; cross products between vectors from the corners of
the cell and 7, and vectors between adjacent corners. For example. if the current
Fo(S = So) were in cell (j,k), a test that it had crossed into cell (j +~ 1.k) upon

integration over one step is that the § component of the cross product,
C(8) = (Fye1. & ~ Fj+1, ket) x (Fuls) = Fjo1, k=1)

changed sign. That is,

C(Ss), x C(Sy + AS), < 0
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Finally, the step size AS is determined using the interpolated value of A® and

ré (tangential velocity) at the marker locations. AS is given by

The values of A© are obtained at the grid points using the values of © at the
(¢ + 1) plane and the i plane. Once 7, (S + AS) is calculated using Equation (12),
the solution is advanced to the ¢ + 1,0-plane. The procedure is repeated until
the markers reach the end of the grid, determined by Omgyz = —,\,’Eh-(—@maz <O<L
Omaz). In hover the effects of other blades could be exactly accounted for by
setting periodic boundary conditions at proper a;.ngles given by ©Op,:. Also the
other spiral turns of the vortex sheets can be computed by relocating the markers
at the upstream edge, (+©m,:) at the same radial and axial position where they

leave the downstream edge (-Omqz).

No instabilities were observed in regions of large step sizes. Thus, a large
number of sheets can be computed and this is restricted only by the axial extent
of the grid and computer memory related restrictions. In general, an azimuthal
length of two and a half times the azimuthal distance between neighboring blades
is used for computation. A computed wake geometry for a two bladed rotor and

a four bladed rotor are shown in Figure 9 and Figure 10, respectively.

Once the set of 7, 's are computed the vortical velocity, ¢ ¥ can be computed.
¢ Y can take many forms, as long as it has the correct vorticity. The best type of ¢ ¥
for this purpose is the one which is concentrated near the line of vorticity, so that
corrections to the potential equation are limited to a relatively small region. The
tangential velocity changes rapidly and normal velocity is small near the sheet, and

a ¢ ¥ was initially sought with these properties. In this type of representation a
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Figure 10: Cross Section of Wake Geometry for Four-Bladed Rotor
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tangential velocity discontinuity is being replaced by a region of spread tangential
velocity variation. While this is a good picture for the total velocity, ¢, it would
be a bad choice for ¢ ¥. This is due to the fact that such a tangential ¢ ¥ must
extend throughout the entire flow field. Even though the & field is nonzero in only
a small region, this particular ¢¥ field (which defines &) is not small nor limited
to a small region, and requires a large amount of memory. Denoting the direction

along the normal to the sheet by n and along the line by s,
W=0,Gn — Onqs = asinv - anq-av (13)

Since V¢ does not contribute to . Thus, if 4’ = 0 and if ¢ goes to zero away
from the line,

Ong, = -J#0
Hencg, a ¢ Y oriented along the sheet must be extended throughout the field if the

vorticity is to be concentrated only near the sheet.

Another, more computationally efficient approach is to use a distribution of
spread velocity normal to the sheet surface as shown in Figure 11. If ¢ = 0 and
gy # 0, however. J = 0,9, and g}, can be concentrated near the sheet. going to
zero away from it. Thus, instead of point vortices the sheet is considered to be
made up of a set of discrete velocity vectors oriented normal to the line within the
cross-plane and concentrated near it. Then ¢V is non zero only in a small region
near the sheet. This representation seems very unphysical until one considers that -
it is not the entire velocity which is represented. but merely the vortical portion,
¢ Y. The total velocity, § must still be of the form shown in Figure 12, after the
potential part, V¢ is added. The vortical part ¢ *, can have any form as long as
& =V x ¢¥. The normal form depicted in Figure 11 has the advantage of being

nonzero only in a thin region, just like .
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The advantage of this type of representation is twofold:

1. It is possible to give a structure to the vorticity field J. This field can be

either solved for or modeled.

2. It is possible to put vorticity anywhere in the field with no constraints imposed

by the grid.

With these features, a combined Eulerian-Lagrangian code has been developed
for the hover problem. The vortical velocity component, ¢ 7, is a normal velocity
distribution describing a thin shed vorticity sheet which is allowed to convect freely
through the flow field. ¢ Vis a continuous vortical velocity field which suffers no
artificial numerical diffusion and can easily be tailored to the problem. For the
hover problem it has sufficed to model ¢ Yusing functions which were chosen on

the basis of numerical convenience alone.

In order to find the required strength of ¢ “we use Gauss' theorem to obtain

a relation for the integral of ¢* along a normal at each point on the sheet;

/qzdnz r

The circulation, T, is known at the upstream edge of the sheet (blade trailing
edge) from the lift distribution (which is computed as part of the entire calcula-
tion). Since it is constant along mean streamlines within the sheet it can easily be
computed on the entire sheet. This relation provides a scaling factor which gives
the magnitude of ¢’V as soon as the width of the layer and the functional form of
. is determined. This width and functional form can be found by using a viscous
solution or by simply choosing apropriate values. For the rotor wake problem. the

latter approach suffices. These vectors are convected with the flow, and as the
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line evolves and the distance between vectors changes, the magnitude of the ¢
vectors (q%) is changed so that the averaged g2 remains constant at each position

on the line. To avoid singularities g is spread over a small region, comparable to

the mesh spacing on either side of the line:
7°(A =CY_T, ol - 7ul)d”
¢

where I'; is the circulation at the trailing edge where the particular marker (¢)

originated, the spreading function,

Ar?
o(Ar) = maz(0,1 — 72—)

and ¢,’ is a vector normal to each panel and proportional to the panel area. The
normalization constant C is such that, in the limit when markers are closely spaced
and T, is slowly varying, the integral of ¢ V() through the sheet at any marker,
m, equals to I‘m.‘ The only specified quantity is ”a”' which is taken to be about

two cell widths. Stable, smooth solutions have been found using this spreading.

Referring to Figure 13, the closed line integral of ¢ - d¢ around a portion of
the sheet is equal to the area integral of w,. Since V¢ does not contribute to
the line integral and ¢’ is short range, only those portions of the line near the
sheet encircled by dashed curves contribute to the integral. ‘No matter how ¢V
is distributed along the sheet within the closed curve, the area integral of w,
is determined by the two small areas where the path crosses, which are equal
to the circulation corresponding to the markers at those points. The motion of
the markers through the velocity field is determined by the requirement that the
integral of momentum through the sheet is conserved. It is important to see that
only such short-range (nonzero in only a few cells on either side of the sheet)

¢ V’s can be effective for use in this scheme. If we had a long range form, given,
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for example, by the Biot-Savart law then the ¢V calculation would have to be
made for each point in the entire grid. Each of these would effectively involve
a two dimensional integration over the entire vortex sheet, which would then be

prohibitively expensive.

An interpretation of the ¢ ¥ term for incompressible flow is as follows: con-
sidering a small region near the line, we can ignore the 9%¢ tangential terms in

the Laplacian since 3¢ will be much larger and we have,
V. (Vo +¢%) =V +08,.q° =0.

or

Vip ~ 634) = —0nq,

Hence,

On® = —q, ~ constant

o = / qldn.

where brackets denote the jump in @ across the line and the integral is done normal
to and through the line. Thus we are effectively putting in a smeared discontinuity

in ¢. Exactly the same argument applies to the compressible potential flow case.

The vortical velocity is computed at each point in the grid where. V¢ is
computed using a spreading distance that is proportional to the local cell area for
each sheet. Then, the contribution to ¢ ¥ from each sheet at a given point is added

to give the total ¢ V.

e . . . B IR R N
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3.5.1 Revised Formulation for Vortical Velocity Calculation

The calculations described above were done with an initial formulation de-
scribed in Section 3.1. It can be shown that, as the grid is refined, the (specified)
vortex spreading with this initial formulation must decrease less rapidly than the
cell size. Otherwise, numerical effects appear which can be reflected in the motion
of the vortex. For example, considering a blade segment with constant circulation,
if the spreading is of the order of the cell size, h, and the spreading function is

constant within A and zero outside,
Ig*IT/h
if a grid point is within the spreading distance and zero otherwise.

The voriicity in a computational cell where only one point is within spreading

distance of the sheet is then given by
Flh? = ]i- df = §|hq‘v'
Where a is the angle of orientation of the sheet and
B = cos o — s1n «

From this,

|G| = BT /2h?

or

i ~ 1/h?
and the numerical error in velocity even in a region of zero

16q| ~ 1/h

o e oy v - v —— r—— g
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Thus, a numerical vorticity is created locally (when it should actually be zero for
constant I') that increases as ,—.’5 This also happens in regions where three corners

of the cell are within the spreading distance and one outside.

i A more accurate form for § Y based on Clebsch-type of representation has

been developed and used on four-blade rotor configurations. In this formulation:
I " §® =TV,

1 where I'°(7) is a three dimensional field which smoothly goes to the appropriate

{ [’ (circulation value) on the sheet as 7 approaches the sheet surface. The Clebsch

J potential, ¥(7), smoothly goes from + 1/2 on one side of the sheet to - 1/2 on the
other. A convenient formula for ¥(f) is
Y(r) = 1/2 sin (7S,/2), |Sa]<a/2
§ ‘ A C P(r) = +1/2, S, > +a/2
‘ ¥(7) = -1/2, Sp < —a/2
j where S, is a (signed) normal distance from the point 7 to the sheet.
] We use interpolation-like formulae to compute I'°(7) and S,(7) at any grid
point 7;

T.(7) = [)_Teo(A7)/A
¢
! | Sa(7) = [Y_ St (Fi7)o(Ary)]/A
¢
Sn(7) = |Sn (7|
j A=Y o(ar),
¢
! Afg =7 -1,
where the I'; is the circulation defined for each marker, /, that defines the sheet. I'¢

remains constant on each marker from the point on the blade trailing edge where

P N
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it is shed. Also, S}*(7,7¢) is the normal distance from 7 to a plane through the

sheet at marker £ and the spreading function, o(A7) is
o(Afy) = maz(0,1 — AFy/a?)
where a is a specified spreading distance.

Even through v is non-zero throughout the field (except on the sheet), Vo
is zero beyond the spreading distance from the sheet. Accordingly, both I'¢(7)
and ¥(7) need be computed only on those grid points that are in a narrow band
about the sheet with thickness of the order of the spreading distance. With this
¢ ¥ there is no spurious numerical vorticity in regions near the sheet where I' is
constant (no physical vorticity on the sheet), and even in regions where [' varies
smoothly there is no divergent error that becomes large as the grid is refined. In

regions where I is constant I‘f(r‘)‘ will be constant and ¢ ¥ can be written
q* = V(I*u(7).

Even though ¢V is still non-zero, if the same numerical differencing scheme is used
for V4 as is used for 6¢, the effect of the sheet in regions of zero vorticity will be
identically zero. This was not true for the earlier formulation of § ¥, and resulted
in a requirement for larger spreading distances and thicker vortices (for a given
grid). The new formulation has been successfully applied to two four—Bla.ded rotor
configurations and is seen to give improved vortex geometry. Vorticity contours
for a four-blade rotor obtained using this revised formulation is shown in Figure
14. Also this formulation allows the embedding of a tighter vortex sheet with

smaller spreading, even in a fairly coarse, computationally efficient mesh.




Figure 14: Wake Geometry and Vorticity Contour for the Third Sheet
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3.6 Boundary Condition

For all of the results presented a 128 x 40 x 32 grid computational was used.
The upper boundary is at about a half rotbr span above the rotor disk. Dirichlet
conditions were imposed on the potential there, using a form given in Reference
[14] for a semi-infinite vortex cylinder, which approximates the vortex system at

this boundary, given by

b = lﬂ Teyl
CTAdy \ VT + (v - ve)?

where y_, is the position of the top of the cylinder. At the lower boundary, about
0.8 span below the rotor disk, a corrected periodic condition is imposed on both ¢ ¥
and the potential. In this region the markers are descending at an approximately
constant rate and the vortex sheet is approximately periodic in height (y). If this
vortex system were infinite this velocity would be exactly periodic. A-correction is
required since the vortex system is only semi-infinite, siarting approximately from
the rotor plane. This correction involves adding a velocity similar to that used at

the upper boundary.

At the blade surface, the normal velocity is zero, which implies
an¢ = ‘_q—nv.

Finally, Dirichlet conditions are used at the outer cylindrical boundary.
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CHAPTER 4

RESULTS

4.1 Comparison of Results for Two-Blade Rotors

Several applications have been completed which illustrate the predictive ca-
pabilities of the method. Some of the results reported for the two bladed rotors,
were published in 1986 [32, 33, 34|. Results are presented for the full solution of

a lifting rotor in hover, as computed by the three dimensional compressible flow

code, HELIX I which has been developed. In Figure 12 preliminary results of
the full three dimensional compressible code are presented for a single vortex sheet
shed by a rotor blade. Here, the velocity in a cross-plane, normal to the blade
motion, several chords behind the trailing edge is presented. The cross-stream
7 ~ ) | velocity clearly shows a tight vortex which is the size spe.ciﬁe.d by the model used.
b This remains the same as it is convected downstream. Other internal vortex struc-
ture and density distributions consistent with the grid spacing could be imposed.
For this analysis, a rotor with an aspect ratio of 19, a constant pitch of 5° and
Joukowski profile was used. Figure 15 depicts the vorticity contours for the sepa-
rate contribution of each individual sheet for relative values of 0.45 and 0.7. The
contour values are chosen to show the effect of the individual sheets as well as the

spreading. Figure 16 presents the contours for the total vorticity field, which is a

or
<]
[4]
=
13

sum of individual shee

| ‘ The next two bladed rotor chosen for analysis was a high aspect ratio (AR =

18.2) rotor with a constant 8° pitch and NACA0012 profile. Flow visualization
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data are available for this rotor from Reference [4], and the calculated cases were
matched to this reference. The computed wake geometry along with the experi-
mental data in the form of tip vortex axial and radial coordinate are presented in
Figure 17. The load distribution is presented in Figure 18 and chordwise pressure

distribution at 68% and 89% span are presented in Figure 19.

A final two-blade rotor case has an aspect ratio of 6, NACA0012 profile with
no twist or taper a collective pitch of 8°. The experimental data used for compari-
son was obtained from Reference [35]. In this report a complete set of experimental
data for chordwise pressure distribution, tip vortex geometry and spanwise load
distribution was provided for a wide range of tip Mach numbers including tran-
sonic flow. Two tip speeds were considered in this computation: one subsonic

(Mtip = 0.436) and another transonic (0.877).

-For'the subsonic case, the computed wake geometry is presented in Figure 20
as the tip vortex radial coordinate and axial coordinate plotted as a function of
vortex age. The experimental vortex geometry of Reference [34] is also presented in
Figure 20. It can be seen that the computed vortex geometry compares favorably
with experimental data. Also it can be observed from Figure 17 and Figure 20 that
the wake parameter k (axial slope of the tip vortex trajectory before passage of
the following blade) shows a strong dependence on aspect ratio. This is expected
since for rotors of the same blade number and operating condition, both the disk
loading Cr and inflow velocity will decrease with increasing aspect ratio, resulting
in lower tip vortex settling rate. In Figure 21, the circulation distribution is
presented. There is a relatively large increase in the normal loads due to the tip
vortex shedding in the last 20% of the blade radius. This shows the importance

of modelling of the tip vortex shedding for prediction of rotor loads. Chordwise

s m—— .
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Figure 20: Comparison of Tip Vortex Coordinates for Low Aspect Ratio

Two-Bladed Rotor with a Collective Pitch of 8° and NACA0012
Profile at Subsonic Tip Speed with Experimental Data of Caradonna
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surface pressure distributions for the 68% and 89% radial locations compare very

well with experimentally measured data (Figure 22).

The computed solutions for t.ransonic‘ tip speed are presented in Figures 23
through Figure 25. The computed tip vortex axial coordinate and radial con-
traction are given in Figure 23. The bound circulation for this rotor is given in
Figure 24. Chordwise surface pressure distributions compare favorably with the
experimental data at all radial stations. Figure 25 illustrates the data correlation
at the 68%, 80%, 89% and 96%' radial locations. The calculated s(xction pressure,
in regions near the region of tip vortex passage are accurately predicted for all but
the last station which is very close to the tip. To resolve this region a finer grid is
required there. From, Figure 22 and Figure 25 it is easily seen that inboard pres-
sure distributions are only slightly affected by rotor speed. Howev;:r, the outboard
sections show considerable pressure .alteration and shock development as the tip

Mach number approaches sonic values.

4.2 Comparison of Results for Four-Blade Rotors

Even though good results were obtained with two-blade rotors, four-blade
rotors present a crucial test for HELIX I since there the vortex from each blade
passes much closer to the preceding blade. Also most modern rotors have four
blades. As discussed above, the two-blade rotor results presented were done with
an initial formulation of the vortex embedding method. Results for four-blade
rotors were obtained using the new formulation described in Section 3.5.1. The
first four-blade case computed involved blade number 7 of Reference [35|. The
apsect ratio of this rotor is 15, with a 04209 profile and a collective pitch of 10°.

The blade has a linear twist such that the pitch is increased by 8.3° from root to
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Figure 23: Comparison of Tip Vortex Coordinates for Low Aspect Ratio
Two-Bladed Rotor with a Collective of 8° and NACA0012 Profile
at Transonic Tip Speed with Experimental Data of
Caradonna (34|
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Figure 25: Comparison of Chordwise Pressure Distribution for Low Aspect
Ratio Two-Bladed Rotor with a Collective Pitch of 8°, NACA0012

Profile at Transonic Tip Speed with Experimental Data of
Caradonna (34]
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tip. In Figure 26 the computed vortex geometry together with experimental data
is presented. In Figure 27 the computed load distribution is plotted as a function
of span and compared with experiment. Where experimental results are available

agreement is similar to that obtained in the two-blade cases.

Finally a high aspect ratio (AR = 18.2) four-blade rotor configuration with
a NACAO0012 profile, —8° linear twist and a collective pitch of 8° was analyzed.
The experimental data used for comparison were obtained from Reference {4]. As
the number of blades increase, each blade is closer to the tip vortex generated by
the blade ahead due to the reduced separation between the blades. This causes
an increased aerodynamic interference and a steep increase in load distribution
near the tip region. This can be clearly seen in Figure 28, where the load distri-
bution is presented as a function of normalized radial distance. The computed tip

vortex axial and radial coordinates are presented in Figiu'e 29. Agreement with

experiment is seen to be good in this case.

4.3 General Features of the Solution and Wake Geometry

Several general features of the tip vortex geometry are evident in Figures 20
through 29. When an element of the tip vortex is shed from a blade, its axial rate
of descent is low until it passes beneath the following blade. At that point, the tip
vortex element lies radially inboard of the tip vortex of the following blade and thus
experiences a large downward induced velocity. The axial tranport velocities before
and after the passage of the following blade are fairty constant in the near wake,
as can be seen from the substantially linear variations of the axial displacement,
Y., with wake azimuth angle in these regions. The radial displacement, 7. of the

tip vortex decays in approximately exponensially with increasing azimuth angle.
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Figure 28: Blade Circulation Distribution for a Four-Bladed High Aspect
Ratio —8” Rotor with Linear Twist and 8° Collective Pitch with
NACAOQO012 Profile
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The calculations presented were done using HELIX I on a 128 x 42 x 32
grid with 80 points on the airfoil and 18 span stations on the blade. Typical
computation times on a VAX-11/785 system were about 5-6 minutes per iteration.
The code has also been run on the NASA Ames Advanced Computational Facility’s
CRAY X-MP system. The CPU time for one iteration using this system is of the
order of 10 secs. No special effort has yet been made to vectorize the program for
use on this machine. Substantial improvements in the required computation time
could be realized by restructuring the code to benefit fully from the CRAY vector
processing capabilities. It is estimated that by doing this the execution time could

be reduced by a factor of 3 to 4

Generally, a fully converged solution and a stable wake geometry are obtained
in about 3 to 4 wake and vortical velocity updates, in between which an approx-
imately converged potential solution is obtained. It is estimaied that generation
of one complete converged solution for loading and wake geometry takes about 1%

hours of CPU time on the CRAY X-MP.
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CHAPTER 5§

CONCLUSIONS AND RECOMMENDATIONS

The main objectives of the research were to develop a comprehensive method
for the prediction of hovering rotor performance in compressible flow. These have
been met. The technique includes the all-important wake effect and allows for the
analysis of advanced rotor configurations. As such, the constraints imposed by
earlier techniques have been removed. Example calculations were presented which
demonstrate the capabilities of the method including a stable calculation for the
free wake flow. This has been demonstrated for both a traditional high aspect

ratio blade and for an unconventional blade.

Results for the surface pressure distribution, the blade loading and the near
wake geometrfr are all in good agreement with data but the far wake geometry
should be the subject of a future study where improved calculations for §¥ can be

incorporated.

The basic algorithm has been demonstrated as complete in every respect
except for the recommended refinement of selected components. In addition, the

following are recommended:

1. Studies should be made for rotors with non-rectangular tip geometries to

establish the significance of this geometry on the entire flow field calculation.

2. The extension to rotors in forward flight should be made. The major mod-
ification here is to the potential flow calculation which must then be based

upon the unsteady flow equations.
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